Abstract

Matrix metalloproteinases (MMPs) are a family of zinc endopeptidases involved in tissue remodeling. They have also been implicated in various disease processes including tumour invasion and joint destruction and are therefore attractive targets for inhibitor design. For rational drug design, information of inhibitor binding at the atomic level is essential. Recently, we have published the refined high-resolution crystal structure of the catalytic domain of human neutrophil collagenase (HNC) complexed with the inhibitor Pro-Leu-Gly-NHOH, which is a mimic for the unprimed (P3-P1) residues of a bound peptide substrate. We have now determined two additional HNC complexes formed with the thiol inhibitor HSCH2CH(CH2Ph)CO-L-Ala-Gly-NH2 and another hydroxamate inhibitor, HONHCOCH(iBu)CO-L-Ala-Gly-NH2, which were both refined to R -values of 0.183/0.198 at 0.240/0.225-nm resolution. The inhibitor thiol and hydroxamate groups ligand the catalytic zinc, giving rise to a slightly distorted tetrahedral and trigonal-bipyramidal coordination sphere, respectively. The thiol inhibitor diastereomer with 5-configura-tion at the PI′ residue (corresponding to an L-amino acid analog) binds to HNC. Its peptidyl moiety mimics binding of primed (PI′–P3′) residues of the substrate. In combination with our first structure a continuous hexapeptide corresponding to a peptide substrate productively bound to HNC was constructed and energy-minimized. Proteolytic cleavage of this Michaelis complex is probably general base-catalyzed as proposed for thermolysin, i.e. a glutamate assists nucleophilic attack of a water molecule. Although there are many structural and mechanistic similarities to thermolysin, substrate binding to MMPs differs due to the interactions beyond S1′-P1′. While thermolysin binds substrates with a kink at PI′, substrates are bound in an extended conformation in the collagenases. This property explains the tolerance of theimolysin for D-amino acid residues at the PI′ position, in contrast to the collagenases. The third inhibitor, HONHCOCH(iBu)CO-L-Ala-Gly-NH2, unexpectedly binds in a different manner than anticipated from its design and binding mode in thermolysin. Its hydroxamate group obviously interacts with the catalytic zinc in a favourable bidentate manner, but in contrast its isobutyl (iBu) side chain remains outside of the SI′ pocket, presumably due to severe constraints imposed by the adjacent planar hydroxamate group. Instead, the C-terminal Ala-Gly-NH2 tail adopts a bent conformation and inserts into this SI′ pocket, presumably in a non-optimized manner. Both the isobutyl side chain and the C-terminal peptide tail could be replaced by other, better fitting groups. Thus this inhibitor seems to represent a new lead structure suitable for designing better drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call