Abstract
Selected K molecular-orbital (MO) transitions in collisions of 100-, 160-, and 200-MeV /sup 93/Nb on /sup 93/Nb and 200-MeV /sup 93/Nb on /sup 120/Sn have been isolated in a MO x-ray--K x-ray coincidence measurement. This experiment exploits the cascade relationship between the MO x rays emitted in transitions from the (2p..pi../sub x/, 2psigma) MO's into the 1ssigma MO and the characteristic K x ray which follows from the filling of the ensuing vacancy in the projectile or target atoms after their separation. In both symmetric and asymmetric systems, most of the high-energy MO x rays (C2 radiation) were found to be in coincidence with characteristic K x rays while the low-energy MO x rays (C1 radiation) were not correlated to the K x rays. Noncascade processes due to multiple vacancies in the 1ssigma and 2psigma MO's were also found to contribute a small amount to the true MO x-ray--K x-ray coincidences. Theoretical estimates of the relative contributions of the isolated transitions as well as contributions from multiple vacancies are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.