Abstract

AbstractThe heterogeneous microstructure of semicrystalline polymers complicates the relationship between their electrical conductivity and carrier concentration. Charge transport models typically describe conductivity with an assumption of uniform doping throughout the material. Here, the evolution in morphology and optoelectronic properties of poly(3‐hexylthiophene) (P3HT) is reported as a function of carrier concentration in an organic electrochemical transistor using a polymeric ionic liquid (PIL) as the gate insulator. Operando grazing incidence X‐ray scattering reveals that negatively charged ions from the dielectric first infiltrate the amorphous regions of the semiconductor, and then penetrate the crystalline regions at a critical carrier density of 4 × 1020 cm−3. Upon infiltration, the crystallites expand by 12% in the alkyl stacking direction and compress by 4% in the π–π stacking direction. The change in crystal structure of P3HT correlates with a sharply increasing effective carrier mobility. UV–visible spectroscopy reveals that holes induced in P3HT first reside in the crystalline regions of the polymer, which verifies that a charge carrier need not be in the same physical domain as its associated counterion. The dopant‐induced morphological changes of P3HT rationalize the dependence of mobility on carrier concentration, suggesting a phase transition of crystalline regions at high carrier concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.