Abstract

Superconducting transition edge sensor (TES) microcalorimeters are excellent energy-resolving devices for X-ray detection. We fabricated two types of TES microcalorimeter using different mushroom-shaped absorber thicknesses (0.5 and 5μm). Both types of TES microcalorimeter were irradiated with X-ray photons emitted by an <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">55</sup> Fe source. X-ray detection signal pulses were collected to examine the effects of absorber thickness on performance. The values of the thermal conductance G were obtained by analyzing the current-voltage characteristics of the TES. By comparing the experimental G for both types of TES microcalorimeter, the absorber thickness was found to not affect the thermal properties of either type of TES microcalorimeter. The sensitivity α values for both TES microcalorimeters were obtained by analyzing the decay time constant of the X-ray detection signal pulses. The experimental ratio of the full-width at half-maximum value for the energy peaks of the Mn-K <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">α</sub> X-ray between both types of TES microcalorimeter was similar to theoretical estimations based on the different absorber thicknesses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.