Abstract

The electronic energy structure of substitution solid solutions based on boron nitride B 1-x NR x and BN 1-x Rx (R = C, O) (x=0.25) in a diamond-like modification of ZnS type has been investigated by the local coherent potential method in terms of multiple-scattering theory. The total and partial densities of states were calculated for each element in a solid solution. The crystalline potential was calculated using an MT approximation. The lattice parameter was chosen based on X-ray diffraction data for c-BN: 0.3615 nm. The electronic energy structures of the solid solutions and binary c-BN are compared in the framework of a single approximation. The calculated partial densities of states are compared with the experimental X-ray emission and photoelectron spectra of boron, nitrogen, and oxygen in these compounds. The calculated partial charges of electrons at the top of the valence band show that charge transfer from boron to nitrogen takes place in the solid solutions. An analysis of the electronic structures of the solid solutions of boron nitride indicates that the quasicore resonances inherent in binary c-BN are delocalized and that chemical bonding in the solid solutions of boron nitride is weakened.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call