Abstract

The effect of X-ray illumination on the structural properties of the mixed valence Prussian blue analogue CsFe(II)[Cr(III)(CN)6] has been studied by time-dependent high-resolution synchrotron X-ray diffraction. Abrupt isosymmetric phase transitions, accompanied by dramatic volume collapse, were found in the temperature range 245-265 K, induced by sudden Fe(II) spin transitions from the high spin (HS) (4t(2g)2e(g), S = 2) to the low spin (LS) (6t(2g)0e(g), S = 0) configuration. Absorption of X-ray photons generates photoexcited Fe(II)(LS) domains whose size rapidly grows with time until the percolation threshold is reached and the structure collapse is triggered. The persistent character of the optically excited spin crossover states derives from the strong electron-phonon coupling, associated with the large lattice relaxations, which accompany the internal spin rearrangements. It is thus possible to use X-ray light in a controllable and efficient way to induce photoswitching between the ground and hidden or inaccessible excited states in suitably selected multistable materials in the bulk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.