Abstract
We report on novel methods to generate ultra-short, coherent, X-rays using a laserplasma interaction. Nonlinear interaction of intense laser pulses with plasma creates stable, specific structures such as electron cusps. For example, wake waves excited in an underdense plasma by an intense, short-pulse laser become dense and propagate along with the laser pulse. This is called a relativistic flying mirror. The flying mirror can reflect a counter-propagating laser pulse and directly convert it into high-frequency radiation, with a frequency multiplication factor of ∼ 4γ2 and pulse shortening with the same factor. After the proof-of-principle experiments, we observed that the photon number generated in the flying mirror is close to the theoretical estimate. We present the details of the experiment in which a 9 TW laser pulse focused into a He gas jet generated the Flying Mirror, which partly reflected a 1 TW pulse, giving up to ∼ 1010 photons, 60 nJ (1.4×1012 photons/sr) in the XUV spectral region (12.8-22 nm).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.