Abstract
We report the discovery in an 80-ks observation of spatially-extended X-ray emission around the high-redshift radio galaxy TNJ1388-1942 (z=4.11) with the Chandra X-ray Observatory. The X-ray emission extends over a ~30-kpc diameter region and although it is less extended than the GHz-radio lobes, it is roughly aligned with them. We suggest that the X-ray emission arises from Inverse Compton (IC) scattering of photons by relativistic electrons around the radio galaxy. At z=4.11 this is the highest redshift detection of IC emission around a radio galaxy. We investigate the hypothesis that in this compact source, the Cosmic Microwave Background (CMB), which is ~700x more intense than at z~0 is nonetheless not the relevant seed photon field for the bulk of the IC emission. Instead, we find a tentative correlation between the IC emission and far-infrared luminosities of compact, far-infrared luminous high-redshift radio galaxies (those with lobe lengths of <100kpc). Based on these results we suggest that in the earliest phases of the evolution of radio-loud AGN at very high redshift, the far-infrared photons from the co-eval dusty starbursts occuring within these systems may make a significant contribution to their IC X-ray emission and so contribute to the feedback in these massive high-redshift galaxies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.