Abstract

DNA bound on clay minerals, sand, and humic acids has been shown, both in vitro and in situ, to be capable of transforming bacteria and to resist degradation by nucleases, which could result in the crypticity of genes in soil and other natural habitats. To determine where DNA is bound on clay minerals, which may help to explain how bound DNA becomes resistant to degradation by nucleases but retains the ability to transform competent cells, chromosomal DNA from Bacillus subtilis bound on montmorillonite (M) and kaolinite (K) was examined by X-ray diffractometry and transmission and scanning electron microscopy. X-ray diffraction analysis showed that the basal spacings of M and K were not altered, indicating that this DNA did not significantly intercalate the clays. Scanning and transmission electron microscopy showed that the binding of this DNA was primarily on the edges of M and K, although some binding was also apparent on the planar surfaces. Based on the results of these studies, it is postulated that:

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.