Abstract

Recently, nanometer-sized crystalline materials have been proposed to represent a new solid-state structure which exhibits neither long-range order (like crystals) nor short-range order (like glasses). It was the purpose of this study to test this idea by x-ray diffraction experiments. Nanometer-sized crystalline materials are polycrystals in which the size of the crystallites is a few (1--10) nanometers. Structurally, these materials consist of the following two components, the volume fraction of which is about 50% each: a crystalline component, formed by all atoms located in the lattice of the crystallites, and an interfacial component comprising the atoms situated in the interfaces. It is this interfacial component which was proposed to exhibit an atomic arrangement without short- or long-range order. In order to test this idea, the interference function of nanometer-sized crystalline iron (6-nm crystal size) was measured by x-ray diffraction. The measured interference function was compared with the interference function computed by assuming the interfacial component to be short-range ordered or to consist of randomly displaced atoms (no short- or long-range order). It was found that the experimental interference function can only be matched by the computed one if the interfacial component is assumed to have no short- or long-range order.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.