Abstract

A new process was recently developed to manufacture silicon carbide on insulator structures (SiCOI). The process consists of several steps: (i) hydrogen implantation into an oxidised SiC wafer, (ii) bonding the oxidised surface of this wafer to an oxidised silicon substrate and (iii) high temperature splitting of a thin SiC film from the SiC wafer at the depth of the maximum hydrogen concentration and further annealing of the splitted film. The defect generation occurring during this process was investigated by synchrotron radiation X-ray diffraction topography, with special emphasis on to the last two steps. Various X-ray topographic techniques were used to characterise the lattice defects inside the SiC wafer, to quantify the strong lattice distortion near the edges of the splitted SiC film and to reveal SiC film regions lost during the splitting process. Moreover, we show that the strain fields of dislocations, observed in the silicon substrate after high temperature splitting and annealing of the splitted structure, induce a corresponding deformation in the thin SiC overlayer, despite the presence of the sandwiched oxide film. The defect density is much lower in the central region of the SiCOI structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.