Abstract

Chromosome aberrations induced at the first-cleavage metaphase of eggs fertilized with sperm recovered from spermiogenic cells which had been X-irradiated and treated with mitomycin C (MMC) at various stages were observed using in vitro fertilization and embryo culture technique. Furthermore, the repair capacity of the fertilized eggs for X-ray- and MMC-induced DNA damage which was induced in the spermiogenic cells and retained in the sperm until fertilization was investigated by analysis of the potentiation effects of 2 repair inhibitors, 3-aminobenzamide (3AB) and caffeine on the yield of chromosome aberrations. The frequency of chromosome aberrations observed in the eggs fertilized with sperm recovered from the early spermatid to late spermatocyte stage with X-irradiation of 4 Gy (16–20 days after X-irradiation) was markedly higher than that in the eggs fertilized with sperm recovered from spermatozoa to late spermatid stage (0–8 days after X-irradiation). The induced chromosome aberrations predominantly consisted of chromosome-type aberrations, the main type being chromosome fragment followed by chromosome exchange through all the spermiogenic stages. On the other hand, a high frequency of chromosome aberrations was not induced through all the stages with MMC treatment of 5 mg/kg. The remarkable potentiation effects of 3AB and caffeine were found in the eggs fertilized with sperm recovered from almost all the spermiogenic stages after X-irradiation. In the MMC treatment, a remarkable caffeine effect was observed limitedly in mid-early spermatids to late spermatocytes where a large amount of MMC damage could be induced. These results suggest that the large amount of DNA lesions induced in spermiogenic cells by X-rays and MMC persist as reparable damage until sperm maturation and are effectively repaired in the cytoplasm of the fertilized eggs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.