Abstract

Changes in the composition of anchored [M(COD)Cl]2–NH2–C3H6–SiO2 and [M(COD)Cl]2–P(Ph)2–C2H4–SiO2 (where M = Ir, Rh) catalysts in reactions of gas-phase selective hydrogenation of propene, propyne and 1,3-butadiene with parahydrogen (p-H2) were studied using XPS. The atomic ratio M/Cl has been proposed as an indicator of the stability of the structure of the anchored complex, both at the stage of sample preparation and in the reaction. Based on a comparison of XPS data and the results of catalytic testing using parahydrogen-induced polarization, it is shown that the stability of the anchored {[M(COD)Cl]2–Linker–SiO2} complex during hydrogen activation is a key factor in the catalytic behavior of systems. Such stability is influenced not only by the chosen metal and linker, but also by the nature of the hydrogenated substrate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.