Abstract

Surface modification of natural metal sulfides (pyrite, arsenopyrite, chalcopyrite, sphalerite, galena, and molybdenite) treated by high-power electromagnetic pulses (HPEMPtreatment) has been studied by X-ray photoelectron spectroscopy as a function of HPEMP treatment duration. Two principal common steps and some differences in the surface evolution process were identified. The initial surface modification step was observed at low treatment doses (up to N ~ 103 pulses). Formation or accumulation in the surface layer of metal-deficient sulfide phase, oxides and hydroxides, elemental/polysulfide sulfur and/or metastable sulfur (thiosulfate, sulfite) was observed at this step. The second step (N ≥ 3·103 pulses) is characterized by thermal loss of elemental sulfur.Differences in the modification process, it was found that the chemical transformations of sulfur in the surface layer of pyrite, arsenopyrite, chalcopyrite include accumulation/formation of S0 (Sn2−) at the first transformation stage (up to N ~ 103 pulses) followed by its removal. In the case of sphalerite and galena, the surface sulfur transformation had a different pattern. It included formation/accumulation at the first stage of metastable sulfur species (thiosulfate, sulfite) converted at an increase treatment duration to the initial state (sulfide or disulfide).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.