Abstract
Metal carbides MC (HfC, NbC, ZrC, TaC and TiC) that were exposed to air under the ambient temperature condition for a period of time were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM) and Raman. Fresh MC samples exposed to the air for different time (fresh, one day, one week and one quarter) illustrated unexpected oxidation degree of the surfaces. XRD tests provided very limited information, since the oxidation process occurred from the surface at the nanometer scale. However, the XPS tests provided more comprehensive information for the MOx (HfO2, ZrO2, Nb2O5, Ta2O5 and TiO2) film and MC (HfC, NbC, ZrC, TaC and TiC) interlayer. Meanwhile, the HRTEM and Raman tests could give some additional or supporting information for XPS tests, when the samples were exposed to the air for longer time (one week or one quarter). Meanwhile, this research is the first to show that the oxidation progress of the metal surfaces of HfC, NbC, ZrC, TaC and TiC can take place in air under the ambient temperature condition and the oxidation film is about 2–5 nm. Meanwhile, a new oxidation mechanism of metal carbides MC (HfC, NbC, ZrC, TaC and TiC) exposed to air under the ambient temperature condition is also proposed, considering the obtained Raman, TEM and XPS results that could clearly confirm the formation of HfO2 and free carbon.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.