Abstract

Metallic magnesium can be reversibly deposited from ethereal solutions of magnesium−aluminum complex salts of the general structure Mg(AlCl4-nRn)2, where R = alkyl. In contrast to the case of lithium surfaces, already thoroughly investigated, the surface state of magnesium electrodes in contact with organic solutions is yet unclear. In this paper we report on a systematic surface analysis of magnesium electrodes in contact with various organic solutions, using XPS. We find in both clean tetrahydrofurane (THF) and THF solutions of dibutylmagnesium or butylmagnesium chloride that the metal surface consists of magnesium oxide and hydroxide (probably developed during manipulation and sample transfer); however, it does not develop thick passivation layers. In THF solutions containing Mg(AlEtBuCl2)2, surface residuals of carbon, aluminum, and chlorine are detected yet are restricted to the outermost part of the surface, as physically adsorbed species. From their concentration one deduces that both the complex salt and the ether are not reduced at the magnesium surface but precipitate as an insoluble film. Metallic magnesium deposited from THF/Mg(AlEtBuCl2)2 solution on gold electrodes shows a very similar surface chemistry, providing an additional proof that, even in the most frail conditions available during electrochemical deposition, pure magnesium is deposited. The surface chemistry of magnesium in contact with propylene carbonate (PC) exhibits as well layered surface chemistry, most of it composed of magnesium oxide and hydroxide, but no evidence is found for reduction products of PC. It is concluded that the magnesium metal behaves like a surface film-free electrode in organo-haloaluminate/THF solutions. Our conclusions support several other studies on the properties of magnesium in such solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.