Abstract

Thin (Co0.8Al0.2)100−xNx (x=0–30 at.%) alloy films prepared by a reactive radio frequency (r.f.) sputtering method were characterized by XPS and x-ray diffraction (XRD). The film with no nitrogen consisted of a CsCl-type CoAl metallic compound, while the nitrogen-containing alloys were composed of very fine AlN and face-centred cubic (fcc) Co phases. The quantitative XPS analysis under an assumption of uniform distribution of all the elements resulted in much lower concentrations of Co and higher concentrations of Al and N in comparison with the bulk composition for the nitrogen-containing alloys. By taking account of the granular structure of the alloy films, i.e. the nanoscale particles of fcc Co embedded in the AlN compound, the results of quantitative XPS analysis were explained successfully. Moreover, the thickness of the AlN layer and the size of the fcc Co particles were also able to be estimated under the nanoscale structure models. The results were in good agreement with observation by transmission electron microscopy, especially when a nanostructure model was adopted where nanoscale Co–N particles are dispersed in AlN matrix in a simple cubic-like arrangement. © 1998 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.