Abstract

In recent years, recycling the powder leftover within the additive manufacturing process has been attractive for both research, development and industry production. Powder recycling can significantly enhance the sustainability of the manufacturing process, reduce the cost and avoid producing metallic waste as a potential environmental hazard. The first step in reusing the recycled powders in the 3D printing process is to characterize the microstructure and surface quality of the powder for oxidation and impurity analysis. Here, scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS) have been used for the morphology and surface composition analysis of the 316L powders within the Aconity 3D printer. A new powder collection strategy has been introduced to collect powders from different locations in the powder bed: from the top most and surface of the parts and powder bed after the print terminated, from between the printed parts at different heights. The XPS measurements revealed that oxidation is a common in all the powders compared to virgin powder and more oxidation was detected from the powders collected on the very top of the leftover powder and from surface of the bed. The size of the particles does not change much but larger particles remained at the topmost surface. This finding would help in designing a protocol for collecting the recycled powder from the powder bed and it is suggested to follow a a procedure of collecting powders from the different sections of the powder bed in order to avoid mixing the most and least affected particles.

Highlights

  • A large cost of Powder Bed Fusion (PBD) is associated to metallic powder alloys

  • The morphology and surface composition analysis of the virgin and the 5 recycled powders collected from different locations of the powder bed are presented in Fig. 2-5 after scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS) characterizations

  • The SEM images (Fig. 2 and 3) show the microstructure of the virgin powder and the powders sampled from the different locations of the powder bed (#5 and #6)

Read more

Summary

Introduction

To drive the Additive manufacturing (AM) towards a rather sustainable process, powder recycling must become more efficient and reliable during the 3D printing process [1,2] This becomes more important by noting that the end-goal of AM is transition from prototyping to large scale production. A vital aspect of this plan is to think of more economical and environment friendly AM process, e.g. by cutting the process cost and reducing the process waste [3,4]. Both goals can be achieved to a high extent by recycling the metallic powder in AM process.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.