Abstract

The composition and structure of the passive film formed on Ti–6Al–7Nb alloy by electrochemical oxidation in Hank's physiological solution were studied using X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The oxide layer was predominantly TiO 2, but contained small amounts of suboxides TiO and Ti 2O 3 at potentials more negative than 0.75 V. At more positive potentials, TiO 2 was the only form. The formation of suboxides in the lower potential range is less pronounced than in Ti–6Al–4V alloy. The passive range in Hank's physiological solution is broad and extends up to 6.0 V. Aluminium oxide Al 2O 3, and niobium oxides, Nb 2O 5, and NbO and/or NbO 2, are incorporated in the passive layer. Angular resolved XPS analysis confirmed that they are located mainly at the outer oxide/solution interface of the TiO 2 matrix. The thickness of the oxide layer was dependent on the oxidation potential and, after oxidation at 5.75 V, it reached 9.4 nm. EIS measurements correlate well with the XPS data. The incorporation of the oxides of alloying elements into the TiO 2 layer is reflected in the increase in the outer layer resistance at high anodic potentials and longer immersion times. The consequences of this process are beneficial for the overall stability and high corrosion resistance of the Ti–6Al–7Nb alloy under physiological conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.