Abstract

Abstract The thermal reduction of both oxidised palladium foil and SiO 2 Si (100) supported palladium oxide particles, ranging in size fro 3.5 to 13 nm, was investigated with XPS. Equations were derived for the XPS intensities, measured at normal emission angles, of the particles which consisted of a metallic core and an oxidic skin. By applying these equations on the spectra measured after each reduction step, the particle size and the size of the metallic core were calculated. Measurements on palladium foil showed that the oxide layer thickness decreases linearly with the reduction time up to the last monolayer oxide. The reduction rate of the surface oxide is about eight times lower than the reduction rate of the bulk oxide. The growth of the metallic core in palladium oxide particles appeared to be linearly proportional to the surface area. The reduction rate of the smallest particles was comparable to the reduction rate of the surface oxide of the palladium foil. The larger particles behave identical to the palladium foil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call