Abstract
The complexity of the mechanical behavior of filled elastomers can be partly attributed to the fact that the duration of an applied strain plays a crucial role. In order to bring new insights into this still incompletely solved problem, we look for relationships between the macroscopic mechanical relaxation and the relaxation of the filler particles at the nano- to mesoscale. To this end, X-ray photon correlation spectroscopy (XPCS) in homodyne and heterodyne configurations combined with tensile stress relaxation is employed. The paper is devoted to the study of the role of the filler–filler and the filler–matrix interactions in a cross-linked elastomer on the aging mechanisms under strain. The fillers investigated are carbon black, as an example of strong filler–matrix interactions, and hydroxylated silica for which the filler–filler interaction is strong (H-bonds). Homodyne XPCS correlation reveals features of jammed systems (compressed exponential and ballistic motion) for both systems. The exponents c...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.