Abstract
Xeroderma pigmentosum group C (XPC) is a well-known DNA damage recognition protein. Defects in XPC lead to carcinogenesis and progression of many human cancers. In the current study, we defined a novel, important role of XPC in preventing centrosome amplification during cisplatin-mediated DNA damage response. From experiments with human bladder cancer tissue, urothelial tissue from Xpc knockout mice and XPC-silenced cell lines, we found that attenuated XPC expression was associated with increased centrosome amplification in human bladder cancer. A significant increase in centrosome amplification was observed in XPC-silenced cells upon cisplatin treatment. XPC deficiency leads to reduced BRCA1 expression via upregulating its transcriptional repressor, Pit-1. The BRCA1 downregulation results in more DNA double strand breaks accumulation and persistent activation of the ATM-Chk1/Chk2 signaling, resulting in a prolonged G2/M arrest during which centrosome can over-duplicate and lead to centrosome amplification. XPC complementation in silenced cells could reduce Pit-1 expression, increase BRCA1 expression and recover the status of centrosome amplification. Our study reveals a new function for XPC in preventing chromosomal instability, providing new information on cancer chemotherapy and potential clinical significance for cancer management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.