Abstract
Loss-of-function mutations in the X-linked gene xol-1 cause the feminization and death of XO animals (normally males) by shifting the sex determination and dosage compensation pathways toward their hermaphrodite modes. XO-specific lethality most likely results from the reduction in X chromosome expression caused by xol-1 mutations. Mutations in genes required for the hermaphrodite mode of dosage compensation suppress lethality but not feminization, and restore X chromosome expression to nearly wild-type levels. Mutations in genes that control the hermaphrodite modes of both sex determination and dosage compensation fully suppress both defects. These interactions suggest that xol-1 is the earliest-acting gene in the known hierarchy controlling the male/hermaphrodite decision and is perhaps the gene nearest the primary sex-determining signal. We propose that the wild-type xol-1 gene product promotes male development by ensuring that genes (or gene products) directing hermaphrodite sex determination and dosage compensation are inactive in XO animals. Interestingly, in addition to feminizing XO animals, xol-1 mutations further masculinize XX animals already partially masculinized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.