Abstract
Neural induction and anteroposterior neural patterning occur simultaneously during Xenopus gastrulation by the inhibition of BMP and Wnt signaling, respectively. However, other processes might be necessary for determining the neural-epidermal boundary. Xenopus nodal-related-3 (Xnr3) is expressed in dorsal blastula and plays a role in neural formation. In this study, we analyzed how Xnr3 affects neural patterning to identify novel mechanisms of neural-epidermal-boundary determination. In situ hybridization revealed that ventro-animal injection with Xnr3 shifted the lateral krox20 expression domain anteriorly and reduced Otx2 expression. The mature region of Xnr3 is necessary for these effects to occur, and the pro-region accelerated them. Phalloidin labeling revealed that cells around the neural-epidermal boundary lost their slender shape following Xnr3 injection. Moreover, we analyzed the cell migration of ectodermal cells and found specific Xnr3-induced effects at the neural-epidermal boundary. These findings together suggested that Xnr3 affects anterior ectoderm migration around the neural-epidermal boundary to induce a specific neural pattern abnormality. Change of the shape of surrounding ectodermal cells and the specific migratory pattern might therefore reflect the novel mechanism of neural-epidermal boundary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Developmental Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.