Abstract
The B-family polymerases of hyperthermophilic archaea have proven an exceptional platform for engineering polymerases with extended substrate spectra, despite multiple mechanisms for detecting and avoiding incorporation of non-cognate substrates. These polymerases can efficiently synthesize and reverse-transcribe a number of xenonucleic acids (XNAs) that differ significantly from the canonical B-form of DNA. We present here a protocol for hexitol nucleic acid (HNA) synthesis by an engineered Thermococcus gorgonarius polymerase variant, including adaptation for large-scale synthesis and purification, and for other XNAs. We describe XNA purification and reverse transcription (with a previously reported XNA RT also based on Thermococcus gorgonarius), as well as key considerations for the characterization and optimization of XNA reactions. © 2018 by John Wiley & Sons, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.