Abstract
The last decade has witnessed tremendous growth in the field of synthetic genetics, an area of synthetic biology that applies concepts that are commonly associated with the field of genetics, such as heredity and evolution, to artificial genetic polymers with novel backbone structures (XNAs). In addition to the emergence of biologically stable affinity reagents (aptamers), progress in this area has led to the discovery of XNA enzymes (XNAzymes) that are capable of mediating transphosphorylation chemistry with multiple turnover activity. This review explores the evolution and rational design of XNAzymes as well as their potential as reagents in biomedical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.