Abstract

We present XMM-Newton observations of three AGN taken as part of a hunt to find very heavily obscured Compton-thick AGN. For obscuring columns greater than 10^25 cm^-2, AGN are only visible at energies below 10 keV via reflected/scattered radiation, characterized by a flat power-law. We therefore selected three objects (ESO 417-G006, IRAS 05218-1212, and MCG -01-05-047) from the Swift BAT hard X-ray survey catalog with Swift X-ray Telescope XRT 0.5-10 keV spectra with flat power-law indices as candidate Compton-thick sources for follow-up observations with the more sensitive instruments on XMM-Newton. The XMM spectra, however, rule out reflection-dominated models based on the weakness of the observed Fe K-alpha lines. Instead, the spectra are well-fit by a model of a power-law continuum obscured by a Compton-thin absorber, plus a soft excess. This result is consistent with previous follow-up observations of two other flat-spectrum BAT-detected AGN. Thus, out of the six AGN in the 22-month BAT catalog with apparently flat Swift XRT spectra, all five that have had follow-up observations are not likely Compton-thick. We also present new optical spectra of two of these objects, IRAS 05218-1212 and MCG -01-05-047. Interestingly, though both these AGN have similar X-ray spectra, their optical spectra are completely different, adding evidence against the simplest form of the geometric unified model of AGN. IRAS 05218-1212 appears in the optical as a Seyfert 1, despite the ~8.5x10^22 cm^-2 line-of-sight absorbing column indicated by its X-ray spectrum. MCG -01-05-047's optical spectrum shows no sign of AGN activity; it appears as a normal galaxy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call