Abstract

The highly luminous (>1037 erg s?1) supersoft X-ray sources (SSSs) are believed to be Eddington-limited accreting white dwarfs undergoing surface hydrogen burning. The current paradigm for SSSs involves thermally unstable mass transfer from a 1–2M companion. However, this model has never been directly confirmed and yet is crucial for the evolution of cataclysmic variables (CVs) in general, and for the establishment of SSSs as progenitors of Type Ia supernovae in particular. The key SSS is RX J0513.9?6951 which has recurrent X-ray outbursts every 100–200 d (lasting for ?40 d) during which the optical brightness declines by 1 mag.We present the firstXMM observations of RX J0513.9?6951 through one of its optical low states. Our results show that as the optical low state progresses, the temperature and X-ray luminosity decrease, behaviour that is anti-correlated with the optical and ultraviolet (UV) emission. We find that as the optical (and UV) intensity recovers, the radius implied by the spectral fits increases. The high-resolution spectra show evidence of deep-absorption features which vary during the optical low state. Our results are consistent with the predictions of the white dwarf photospheric contraction model proposed by Southwell et al.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.