Abstract

We present the analysis of the X-ray Multi-Mirror Mission (XMM-Newton) European Photon Imaging Camera (EPIC) data of the Galactic supernova remnant (SNR) CTB 109 (G109.1-1.0). CTB 109 is associated with the anomalous X-ray pulsar (AXP) 1E 2259+586 and has an unusual semi-circular morphology in both the X-ray and the radio, and an extended X-ray bright interior region known as the `Lobe'. The deep EPIC mosaic image of the remnant shows no emission towards the west where a giant molecular cloud complex is located. No morphological connection between the Lobe and the AXP is found. We find remarkably little spectral variation across the remnant given the large intensity variations. All spectra of the shell and the Lobe are well fitted by a single-temperature non-equilibrium ionization model for a collisional plasma with solar abundances (kT = 0.5 - 0.7 keV, tau = n_e t = 1 - 4 x 10^11 s cm^-3, N_H = 5 - 7 x 10^21 cm^-2). There is no indication of nonthermal emission in the Lobe or the shell. We conclude that the Lobe originated from an interaction of the SNR shock wave with an interstellar cloud. Applying the Sedov solution for the undisturbed eastern part of the SNR, and assuming full equilibration between the electrons and ions behind the shock front, the SNR shock velocity is derived as v_s = 720 +/- 60 km s^-1, the remnant age as t = (8.8 +/- 0.9) x 10^3 d_3 yr, the initial energy as E_0 = (7.4 +/- 2.9) x 10^50 d_3^2.5 ergs, and the pre-shock density of the nuclei in the ambient medium as n_0 = (0.16 +/- 0.02) d_3^-0.5 cm^-3, at an assumed distance of D = 3.0 d_3 kpc. Assuming CTB 109 and 1E 2259+586 are associated, these values constrain the age and the environment of the progenitor of the SNR and the pulsar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call