Abstract

PSR B1259-63 is in a highly eccentric 3.4 year orbit with a Be star and crosses the Be star disc twice per orbit, just prior to and just after periastron. Unpulsed radio, X-ray and gamma-ray emission observed from the binary system is thought to be due to the collision of pulsar wind with the wind of Be star. We present here the results of new XMM-Newton observations of the PSR B1259-63 system during the beginning of 2004 as the pulsar approached the disc of Be star.We combine these results with earlier unpublished X-ray data from BeppoSAX and XMM-Newton as well as with ASCA data. The detailed X-ray lightcurve of the system shows that the pulsar passes (twice per orbit) through a well-defined gaussian-profile disk with the half-opening angle (projected on the pulsar orbit plane) ~18.5 deg. The intersection of the disk middle plane with the pulsar orbital plane is inclined at ~70 deg to the major axis of the pulsar orbit. Comparing the X-ray lightcurve to the TeV lightcurve of the system we find that the increase of the TeV flux some 10--100 days after the periastron passage is unambiguously related to the disk passage. At the moment of entrance to the disk the X-ray photon index hardens from 1.8 up to 1.2 before returning to the steeper value 1.5. Such behaviour is not easily accounted for by the model in which the X-ray emission is synchrotron emission from the shocked pulsar wind. We argue that the observed hardening of the X-ray spectrum is due to the inverse Compton or bremsstrahlung emission from 10-100 MeV electrons responsible for the radio synchrotron emission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call