Abstract

Menkes disease is an X-linked recessive lethal disorder of copper metabolism, caused by defects in the ATP7A gene. Partial gene deletions comprise about 15% of the mutations causing Menkes disease. We have previously demonstrated identification of partial ATP7A deletions in patients by Southern blot analysis. In the present study, we report the use of three fast and reliable polymerase chain reaction (PCR)-based methods for the identification of partial ATP7A deletions in Menkes disease patients. First we demonstrate the use of multiplex PCR, a fast method for identification and rough localization of partial gene deletions, in which two exons of ATP7A are coamplified. Second, we present PCR amplification of genomic DNA across the deletion junctions, a method enabling identification of the deletion breakpoints and hence the exact size of the deletion. Finally, application of reverse transcription PCR (RT-PCR) for identification and localization of gene deletions at the cDNA level is demonstrated. By studying the mutation at the cDNA level the predicted effect of the mutation on the amino acid sequence and consequently the protein structure and function can be inferred. We demonstrate characterization of partial gene deletions in five patients, and in three of these we were able to determine the breakpoint sequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.