Abstract

Ethnopharmacological relevanceXiehuo Xiaoying decoction (XHXY) has shown great potential in the treatment of GD, but its mechanism remains obscure. Increase of follicular helper T (Tfh) cells and reduction of follicular regulatory T (Tfr) cells contribute to a high thyrotropin receptor antibodies (TRAb) level and possible Graves’ disease (GD). Oxidative stress (OS) disrupts T helper cell differentiation and aggravates autoimmunity. Aim of the studyThis study aimed to investigate whether XHXY decoction can ameliorate autoimmunity in GD via inhibiting OS and regulating Tfh and Tfr cells. Materials and methodsThe main XHXY bioactive compounds were identified using high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. GD was induced in the mice through three intramuscular injections of adenovirus expressing the TSH receptor. Then, the mice received oral gavage of XHXY (17 g/kg·d) and 34 g/kg·d) for 4 weeks. OS indicators were assessed. Flow cytometry was used to confirm the proportion of Tfh and Tfr cells in the lymph nodes and spleens of the mice. Cytokine expression levels were determined using enzyme-linked immunosorbent assay. Factors including interleukin-21, B-cell lymphoma-6, and forkhead box P3 (Foxp3) were detected using quantitative polymerase chain reaction. The mRNA and protein expression levels of Kelch-like ECH-associated protein 1 (Keap1), nuclear factor erythroid-2-related factor 2 (Nrf2), and haem oxygenase 1 (HO-1) were detected using quantitative polymerase chain reaction and Western blotting, respectively. ResultsTwelve main ingredients of XHXY were identified. XHXY relieved GD by lowering thyroxine (p < 0.01) and TRAb levels (p < 0.01). XHXY ameliorated OS by decreasing the levels of NADPH oxidase 2 (p < 0.05), 4-hydroxynonenal (p < 0.01), and 8-oxo-2′-deoxyguanosine (p < 0.001). It inhibited Tfh cell expansion (p < 0.05), as well as the production of cytokine interleukin −21 (p < 0.01), interleukin −4 (p < 0.01) and transcription factor B-cell lymphoma 6 (p < 0.05). XHXY also induced Tfr cell amplification (p < 0.05), increased the production of interleukin −10 (p < 0.05) and transforming growth factor β (p < 0.05) and the mRNA levels of Foxp3 (p < 0.05). Finally, the Tfh/Tfr ratio returned to normal. In addition, XHXY activated Nrf2 and HO-1 expression, but inhibited Keap1 activation. ConclusionsXHXY relieves autoimmunity in GD via inhibiting Tfh cell amplification and Tfr cell reduction, a mechanism which probably involves the Keap1/Nrf2 signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call