Abstract

The problem of click-through rate (CTR) prediction in mobile advertising is one of the most informative metrics used in mobile business activities, such as profit evaluation and resource management. In mobile advertising, CTR prediction is essential but challenging due to data sparsity. Moreover, existing methods often have difficulty in capturing the different orders of feature interactions simultaneously. In this study, a method was developed to obtain accurate CTR prediction by incorporating contextual features and feature interactions. We initially use extreme gradient boosting (XGBoost) as a feature engineering phase to select highly significant features. The selected features are mobile contextual attributes including time contextual, geography contextual, and other contextual attributes (e.g., weather condition) in actual mobile advertising situations. Our model, XGBoost deep factorization machine- (FM-) supported neutral network (XGBDeepFM), combines the power of XGBoost for feature selection, FM for two-order cross feature interaction, and the deep neural network for high-order feature learning in a united architecture. In a mobile advertising condition, our methods lead to significantly accurate CTR prediction in “wide and deep” type of model. In comparison with existing models, many experiments on commercial datasets show that the XGBDeepFM model has better value of area under curve and improves the effectiveness and efficiency of CTR prediction for mobile advertising.

Highlights

  • IntroductionResearchers have proposed different methods of click-through rate (CTR) prediction

  • At present, researchers have proposed different methods of click-through rate (CTR) prediction

  • We use the area under the ROC curve (AUC) as our evaluation metric because it is not bias on the size of test or evaluation data

Read more

Summary

Introduction

Researchers have proposed different methods of CTR prediction. A logistic regression (LR) model has been used to predict the CTR on Google Ads [13]. Zhang et al studied feature representations and proposed the FM-supported neutral network (FNN) [15]. Qu et al proposed the product-based neutral network (PNN), which learns highorder feature interactions by introducing a product layer [16].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.