Abstract
The theory of photoionization describing the interaction of x-ray free-electron laser (XFEL) pulses and high-harmonic-generated (HHG) radiation is generalized to ultrashort laser pulses, where the concept of the standard ionization probability per unit time in Fermi’s golden rule and in Einstein’s theory breaks down. Numerical calculations carried out in terms of a generalized photoionization probability for the total duration of pulses in the near-threshold regime demonstrate essentially nonlinear behavior, while absolute values may change by orders of magnitude for typical XFEL and HHG pulses. XFEL self-amplified spontaneous emission pulses are analyzed to reveal general features of photoionization for random and regular spikes: the dependences of the nonlinear photoionization probability on carrier frequency and spike duration are very similar, allowing an analytical expectation value approach that is valid even when there is only limited knowledge of random and regular parameters. Numerical simulations carried out for typical parameters demonstrate excellent agreement.
Highlights
To circumvent the absence of volumetric x-ray self-emission, essentially two methods have been developed
The theory of photoionization describing the interaction of x-ray free-electron laser (XFEL) pulses and high-harmonic-generated (HHG) radiation is generalized to ultrashort laser pulses, where the concept of the standard ionization probability per unit time in Fermi’s golden rule and in Einstein’s theory breaks down
According to standard quantum mechanical perturbation theory, the total probability W of a transition during an electromagnetic pulse is equal to the probability per unit time w multiplied by the pulse duration τ
Summary
To circumvent the absence of volumetric x-ray self-emission, essentially two methods have been developed. XFEL self-amplified spontaneous emission pulses are analyzed to reveal general features of photoionization for random and regular spikes: the dependences of the nonlinear photoionization probability on carrier frequency and spike duration are very similar, allowing an analytical expectation value approach that is valid even when there is only limited knowledge of random and regular parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.