Abstract
MiR-122 is a major hepatic microRNA, accounting for more than 70% of the total liver miRNA population. It has been shown that miR-122 is associated with liver diseases, including hepatocellular carcinoma. Mir-122 is an intergenic miRNA with its own promoter. Pri-miR-122 expression is regulated by liver-enriched transcription factors, mainly by HNF4α, which mediates the expression via the interaction with a specific DR1 site. It has been shown that phenobarbital-mediated activation of constitutive androstane receptor (CAR), xenobiotic nuclear receptor, is associated with a decrease in miR-122 in the liver. In the present study, we investigated HNF4α–CAR cross-talk in the regulation of miR-122 levels and promitogenic signalling in mouse livers. The level of miR-122 was significantly repressed by treatment with 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), which is an agonist of mouse CAR. ChIP assays demonstrated that TCPOBOP-activated CAR inhibited HNF4α transactivation by competing with HNF4α for binding to the DR1 site in the pri-miR-122 promoter. Such transcription factor replacement was strongly correlated with miR-122 down-regulation. Additionally, the decrease in miR-122 levels produced by CAR activation is accompanied by an increase in mRNA and cellular protein levels of E2f1 and its accumulation on the target cMyc gene promoter. The increase in accumulation of E2f1 on the target cMyc gene promoter is accompanied by an increase in cMyc levels and transcriptional activity. Thus, our results provide evidence to support the conclusion that CAR activation decreases miR-122 levels through suppression of HNF4α transcriptional activity and indirectly regulates the promitogenic protein cMyc. HNF4α–CAR cross-talk may provide new opportunities for understanding liver diseases and developing more effective therapeutic approaches to better drug treatments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.