Abstract

Xenopus Paraxial Protocadherin (xPAPC) has signaling functions that are essential for convergent extension (CE) movements and tissue separation during gastrulation. PAPC modulates components of the planar cell polarity (PCP) pathway, but it is not clear how PAPC is connected to beta-catenin-independent Wnt-signaling. By yeast two-hybrid screen, we found that the intracellular domain of PAPC interacts with Sprouty (Spry), an inhibitor of CE movements. Upon binding to PAPC, Spry function is inhibited and PCP signaling is enhanced. Our data indicate that PAPC promotes gastrulation movements by sequestration of Spry and reveal a novel mechanism by which protocadherins modulate beta-catenin-independent Wnt-signaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.