Abstract

We report the sequences of cDNA clones for two different integrin beta subunits isolated from a Xenopus laevis neurula cDNA library. mRNAs corresponding to both genes are first detected at gastrulation. We show that these two beta subunits are very highly related (98% identity in amino acid sequence) and probably arose at the time of tetraploidization of the X. laevis genome around 50 million years ago. Comparison of these sequences with those of various other vertebrate integrin beta subunit establishes that all species analyzed to date contain a highly conserved integrin beta subunit (beta 1). The interspecies homologies within this class of integrin beta subunits (82-86% identity in amino acid sequence) are much greater than those among the three different beta subunits which are known in humans (40-48% identity in amino acid sequence). Analysis of the homologies clearly indicates duplication and divergence of this multigene family more than 500 million years ago prior to the appearance of the vertebrates. We also observe cross-hybridization between cDNA probes for chicken integrin beta subunits and genomic DNAs of several invertebrate species. Despite the divergence in sequence among different integrin beta subunits, certain features of their structure are remarkably conserved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call