Abstract
Xenophyllite, ideally Na4Fe7(PO4)6, is a rare meteoritic phosphate found in phosphide-phosphate assemblages confined to troilite nodules of the Augustinovka iron meteorite (medium octahedrite, IIIAB). The mineral occurs as tiny lamella up to 0.15 mm long cross-cutting millimeter-sized grains of sarcopside, Fe3(PO4)2, associated with schreibersite, chromite and pentlandite. Xenophyllite is translucent, has a bluish-green to grey-green color and vitreous lustre. Moh’s hardness is 3.5–4. Cleavage is perfect on {001}. Measured density is 3.58(5) g/cm3. The mineral is biaxial (−), 2V 10–20°, with refractive indexes: α 1.675(2), β 1.681(2), γ 1.681 (2). Chemical composition of the holotype specimen (electron microprobe, wt.%) is: Na2O 10.9, K2O 0.4, MnO 5.8, FeO 42.1, Cr2O3 0.8, P2O5 40.7, total 100.7, corresponding to the empirical formula (Na3.67K0.09)Σ3.76(Fe2+6.12Mn2+0.85Cr0.11)Σ7.08P5.99O24.00. Xenophyllite is triclinic, P1 or P-1, a 9.643(6), b 9.633(5), c 17.645(11) Å; α 88.26(5), β 88.16(5), γ 64.83(5)°, V 1482(2) Å3, Z = 3. The toichiome C-centered subcell has the following dimensions: a 16.257(9), b 10.318(8), c 6.257(9) Å, β = 112.77(9)°, V 968(2) Å3, Z = 2. Xenophyllite is structurally related to synthetic phosphate Kna3Fe7(PO4)6 having a channel-type structure, and galileiite, NaFe4(PO4)3. The variations of chemical composition of xenophyllite ranging from Na4Fe7(PO4)6 to almost Na2Fe8(PO4)6 are accounted for by Na-ions mobility. The latter property makes xenophyllite a promising prototype for cathode materials used in sodium-ion batteries.
Highlights
The discoveries of new functional materials have often been inspired by the study of their natural counterparts
Xenophyllite was discovered in the course of a study of phosphide-phosphate assemblages confined to troilite nodules of the Augustinovka iron meteorite, and was named from Greek ξένoς and φύλλo, for its extraterrestrial origin and perfect cleavage of its crystals
Xenophyllite is a rare mineral hosted within millimeter-sized phosphate-phosphide assemblages confined to centimeter-sized ovoidal troilite nodules common in the Augustiovka meteorite
Summary
The discoveries of new functional materials have often been inspired by the study of their natural counterparts. Xenophyllite was discovered in the course of a study of phosphide-phosphate assemblages confined to troilite nodules of the Augustinovka iron meteorite (medium octahedrite, IIIAB), and was named from Greek ξένoς (xénos, stranger) and φύλλo (fýllo, leaf), for its extraterrestrial origin and perfect cleavage of its crystals. Both the mineral and the name have been approved by the Commission on New Minerals and Mineral Names, International Mineralogical Association [6]. The holotype specimen of xenophyllite is deposited at the collection of the Mining Museum, Saint Petersburg Mining
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.