Abstract

Preclinical evidence in rodents has proven that xenon may be a very promising neuroprotective agent for treating acute ischemic stroke. This has led to the general thinking that clinical trials with xenon could be initiated in acute stroke patients in a next future. However, an unappreciated physicochemical property of xenon has been that this gas also binds to the active site of a series of serine proteases. Because the active site of serine proteases is structurally conserved, we have hypothesized and investigated whether xenon may alter the catalytic efficiency of tissue-type plasminogen activator (tPA), a serine protease that is the only approved therapy for acute ischemic stroke today. Here, using molecular modeling and in vitro and in vivo studies, we show (1) xenon is a tPA inhibitor; (2) intraischemic xenon dose dependently inhibits tPA-induced thrombolysis and subsequent reduction of ischemic brain damage; (3) postischemic xenon virtually suppresses ischemic brain damage and tPA-induced brain hemorrhages and disruption of the blood-brain barrier. Taken together, these data indicate (1) xenon should not be administered before or together with tPA therapy; (2) xenon could be a golden standard for treating acute ischemic stroke if given after tPA-induced reperfusion, with both unique neuroprotective and antiproteolytic (anti-hemorrhaging) properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.