Abstract

Cr layers (60–75 nm) on Al substrates and Cr2N layers (40–120 nm) on Al+3 wt.% Mg substrates were irradiated at 80 K and 300 K with 150–900 keV Xe-ions. The ion-beam-induced interface mixing was analyzed by means of Rutherford Backscattering Spectrometry (RBS). Both systems exhibit fairly small mixing rates, with those of Cr/Al being enhanced at 300 K target temperature, due to radiation-enhanced diffusion. The observed interface broadening is compared with predictions of ballistic and thermal spike mixing models. The low-temperature mixing rates in the system Cr/Al are underestimated by the ballistic model, but are rather well reproduced by local spike models. Mixing in the Cr2N/Al system at both temperatures, on the other hand, seems to be rather well described by the ballistic model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.