Abstract

BackgroundThe persistent organic pollutants (POPs) are highly lipophilic and resistant to biodegradation and found in e.g. seafood and marine mammals. Greenlandic Inuit have high intake of marine food and thus high POP burden that varies according to local conditions and dietary preference. We do for the very first time report the serum POP related non-steroidal xenohormone activity of Inuit across Greenland.The aims were 1) to determine the integrated xenohormone bioactivities as an exposure biomarker of the actual lipophilic serum POP mixture measuring the effect on estrogen (ER) and androgen receptor (AR) transactivity in citizens from different Greenlandic districts and 2) to evaluate associations to serum POP markers (14 PCBs and 10 pesticides) and lifestyle characteristics.MethodsSerum samples from 121 men and 119 women from Nuuk, Sisimiut and Qaanaaq were extracted using SPE-HPLC fractionation to obtain the serum POP fraction free of endogenous hormones. The serum POP fraction was used for determination of xenohormone transactivity using ER and AR reporter gene assays.ResultsIn overall, the xenohormone transactivities differed between districts as well as between the genders. Associations between the transactivities and age, n-3/n-6 and smoker years were observed. The xenoestrogenic and xenoandrogenic transactivities correlated negatively to the POPs for the combined female and male data, respectively.ConclusionThe non-steroidal xenohormone transactivities can be used as an integrated biomarker of POP exposure and lifestyle characteristics. The actual serum POP mixtures antagonized the age adjusted sex hormone receptor functions. Comparison of different study populations requires in addition to age inclusion of diet and lifestyle factors.

Highlights

  • The increasing load of the environment by man-made pollutants is of concern for the human health

  • The aims were 1) to determine the integrated xenohormone bioactivities as an exposure biomarker of the actual lipophilic serum persistent organic pollutants (POPs) mixture measuring the effect on estrogen (ER) and androgen receptor (AR) transactivity in citizens from different Greenlandic districts and 2) to evaluate associations to serum POP markers (14 polychlorinated biphenyls (PCBs) and 10 pesticides) and lifestyle characteristics

  • The non-steroidal xenohormone transactivities can be used as an integrated biomarker of POP exposure and lifestyle characteristics

Read more

Summary

Introduction

The increasing load of the environment by man-made pollutants is of concern for the human health. The lipophilic persistent organic pollutants (POPs) includes polychlorinated dibenzo-p-dioxins/furans (PCDDs/ PCDFs), polychlorinated biphenyls (PCBs) and certain organochlor pesticide residues e.g. 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane (DDT), its metabolite 1,1dichloro-2,2-bis (p-chlorophenyl)-ethylene (p,p'-DDE), toxaphenes and chlordanes. Due to their high lipophilicity and resistance to biodegradation POPs are biomagnified through the food chain and found in fatty tissues at high concentrations in predator fish and birds, seals, whales and polar bears [3]. Greenlandic Inuit display high body burden of POPs [4], that significantly correlate with age, smoking and the level of n-3 polyunsaturated fatty acids in plasma, being strong indicators of the main source of POP contaminants in their traditional marine food [5,6,7,8,9]. The aims were 1) to determine the integrated xenohormone bioactivities as an exposure biomarker of the actual lipophilic serum POP mixture measuring the effect on estrogen (ER) and androgen receptor (AR) transactivity in citizens from different Greenlandic districts and 2) to evaluate associations to serum POP markers (14 PCBs and 10 pesticides) and lifestyle characteristics

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.