Abstract

Horses are widely used as large animal preclinical models for cartilage repair studies, and hence, there is an interest in using equine synovial fluid-derived mesenchymal stem cells (SFMSCs) in research and clinical applications. Since, we have previously reported that similar to bone marrow-derived MSCs (BMMSCs), SFMSCs may also exhibit donor-to-donor variations in their stem cell properties; the current study was carried out as a proof-of-concept study, to compare the in vivo potential of equine BMMSCs and SFMSCs in articular cartilage repair. MSCs from these two sources were isolated from the same equine donor. In vitro analyses confirmed a significant increase in COMP expression in SFMSCs at day 14. The cells were then encapsulated in neutral agarose scaffold constructs and were implanted into two mm diameter full-thickness articular cartilage defect in trochlear grooves of the rat femur. MSCs were fluorescently labeled, and one week after treatment, the knee joints were evaluated for the presence of MSCs to the injured site and at 12 weeks were evaluated macroscopically, histologically, and then by immunofluorescence for healing of the defect. The macroscopic and histological evaluations showed better healing of the articular cartilage in the MSCs' treated knee than in the control. Interestingly, SFMSC-treated knees showed a significantly higher Col II expression, suggesting the presence of hyaline cartilage in the healed defect. Data suggests that equine SFMSCs may be a viable option for treating osteochondral defects; however, their stem cell properties require prior testing before application.

Highlights

  • The regeneration capability of articular cartilage is limited due to the lack of blood vessels and nerve supply [1]

  • We identified a donor, whose synovial fluid-derived mesenchymal stem cells (SFMSCs) were similar to the bone marrow-derived mesenchymal stem cells (MSCs) (BMMSCs) in their proliferation and expression of CD29, CD44, and CD90 but exhibited a significantly higher chondrogenic potential based on the increased expression of aggrecan and type II collagen proteins [16]

  • The step is to evaluate the chondrogenic potential of the SFMSCs and BMMSCs in an in vivo model, prior to their application in equine clinical cases of articular cartilage injuries

Read more

Summary

Introduction

The regeneration capability of articular cartilage is limited due to the lack of blood vessels and nerve supply [1]. Bone marrow stimulation techniques such as subchondral drilling, abrasion, and microfracture procedures are the currently accepted methods of regenerating articular cartilage defects which aim at employing bone marrow constituents to repair the defects [2, 3]. These procedures are supposed to stimulate chondrogenesis coupled to the formation of fibrocartilage and/or hyaline cartilage. Autologous chondrocyte implantation is another technique which has been used in the repair of chondral and osteochondral lesions [4, 5] This technique suffers from technical and biological challenges, including site morbidity, low numbers of chondrocytes, and the formation of the undesirable fibrocartilage [6, 7]. Regeneration of articular cartilage is a health concern for both human and veterinary patients, and an ideal therapy has yet to be identified

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call