Abstract

Nine fish species of commercial interest from six teleost families and two species of elasmobranchs were selected for characterisation of hepatic biomarkers used in early-warning assessment of pollutant exposure. The sampling was carried out in front of the Barcelona coast (NW Mediterranean) during December 2006 at shelf (53 m) and slope (660 m) depths. The enzymes considered included the antioxidant defence catalase (CAT) and glutathione reductase (GR), phase I ethoxyresorufin O-deethylase (EROD) and phase II glutathione S-transferase (GST). Protein yield (PY) was used as a general marker of hepatic protein synthesis. Significant interspecies differences were evidenced, although each marker varied independently. Enzymatic activities in teleosts were higher than in elasmobranchs; they were very low in Scyliorhinus canicula (mainly a benthic feeder), but not so low in Galeus melastomus (pelagic feeder). In relation to depth, shallow water, shelf-living species had higher metabolic activities. Trophic variables were significantly related to PY and EROD activity, and were especially high in benthic/suprabenthic feeders. Trophic level (deduced from stable isotopy) and stomach fullness were associated with all hepatic markers, except GR. Swimming capacity was related to all hepatic enzymes. Our findings can be applied, not only from the perspective of conservation ecology regarding pollution, but also in fisheries, due to the economic interest of the species involved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.