Abstract

Human mesenchymal stromal cells (hMSC), also called mesenchymal stem cells, are adult cells that have demonstrated their potential in therapeutic applications, highlighted by their ability to differentiate down different lineages, modulate the immune system, and produce biologics. There is a pressing need for scalable culture systems for hMSC due to the large number of cells needed for clinical applications. Most current methods for expanding hMSC fail to provide a reproducible cell product in clinically required cell numbers without the use of serum-containing media or harsh enzymes. In this work, we apply a tailorable, thin, synthetic polymer coating-poly(poly(ethylene glycol) methyl ether methacrylate-ran-vinyl dimethyl azlactone-ran-glycidyl methacrylate) (P(PEGMEMA-r-VDM-r-GMA), PVG)-to the surface of commercially available polystyrene (PS) microcarriers to create chemically defined three-dimensional (3D) surfaces for large-scale cell expansion. These chemically defined microcarriers provide a reproducible surface that does not rely on the adsorption of xenogeneic serum proteins to mediate cell adhesion, enabling their use in xeno-free culture systems. Specifically, this work demonstrates the improved adhesion of hMSC to coated microcarriers over PS microcarriers in xeno-free media and describes their use in a readily scalable, bioreactor-based culture system. Additionally, these surfaces resist the adsorption of media-borne and cell-produced proteins, which result in integrin-mediated cell adhesion throughout the culture period. This feature allows the cells to be efficiently passaged from the microcarrier using a chemical chelating agent (ethylenediaminetetraacetic acid (EDTA)) in the absence of cleavage enzymes, an improvement over other microcarrier products in the field. Bioreactor culture of hMSC on these microcarriers enabled the production of hMSC over 4 days from a scalable, xeno-free environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.