Abstract
Recent advances in software and architectural support for server virtualization have created interest in using this technology in the design of consolidated hosting platforms. Since virtualization enables easier and faster application migration as well as secure colocation of antagonistic applications, higher degrees of server consolidation are likely to result in such virtualization-based hosting platforms (VHPs). We identify two shortcomings in existing virtual machine monitors (VMMs) that prove to be obstacles in operating hosting platforms, such as Internet data centers, under conditions of such high consolidation: 1) CPU schedulers that are agnostic to the communication behavior of modern, multitier applications and 2) inadequate or inaccurate mechanisms for accounting the CPU overheads of I/O virtualization. We develop a new communication-aware CPU scheduling algorithm and a CPU usage accounting mechanism. We implement our algorithms in the Xen VMM and build a prototype VHP on a cluster of 36 servers. Our experimental evaluation with realistic Internet server applications and benchmarks demonstrates the performance/cost benefits and the wide applicability of our algorithms. For example, the TPC-W benchmark exhibited improvements in average response times between 20 percent and 35 percent for a variety of consolidation scenarios. A streaming media server hosted on our prototype VHP was able to satisfactorily service up to 3.5 times as many clients as one running on the default Xen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.