Abstract

In the present paper, Iodine XeI*, XeCl*, KrCl barrier, glow and capacitive discharge excilamps have been studied. Xe-I<SUB>2</SUB> or Xe-He-I<SUB>2</SUB> excilamps emit at iodine monatomic resonance lines in the range of 180-210 nm, and on XeI molecule band. Besides that, by varying pressure and mixture composition, it is possible to control relation between iodine monatomic lines and XeI* molecule band radiation intensity. The efficiency level is up to 12 percent. The lifetime in sealed-off excilamps was more 1000 h. It is shown that at barrier KrCl and XeCl excilamps excitation by short unipolar or bipolar voltage pulse the efficiency is higher than by sine pulses excitation. Output at (lambda) approximately 222 nm up to 100 W and at 308 nm up to 75 W from barrier discharge excilamps was obtained. Presence of filaments occurs to be a necessary condition to obtain high efficiency since in that case a demanded level of excitation specific power is being achieved. Radiation pulse delay relatively to excitation in the conditions of homogeneous discharge probably demonstrates low efficiency of KrCl* and XeCl* molecules formation at a low level of excitation power. Output at (lambda) approximately 222 nm up to 190 W and at 308 nm up to 91 W from glow discharge excilamps was demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.