Abstract
A brain-computer interface (BCI) is a communication system that allows to control a computer or any other device thanks to the brain activity. The BCI described in this paper is based on the P300 speller BCI paradigm introduced by Farwell and Donchin . An unsupervised algorithm is proposed to enhance P300 evoked potentials by estimating spatial filters; the raw EEG signals are then projected into the estimated signal subspace. Data recorded on three subjects were used to evaluate the proposed method. The results, which are presented using a Bayesian linear discriminant analysis classifier , show that the proposed method is efficient and accurate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.