Abstract

Obesity-mediated hypoxic stress underlies inflammation, including interferon (IFN)-γ production by natural killer (NK) cells in white adipose tissue. However, the effects of obesity on NK cell IFN-γ production remain obscure. Here, we show that hypoxia promotes xCT-mediated glutamate excretion and C-X-C motif chemokine ligand 12 (CXCL12) expression in white adipocytes, resulting in CXCR4+ NK cell recruitment. Interestingly, this spatial proximity between adipocytes and NK cells induces IFN-γ production in NK cells by stimulating metabotropic glutamate receptor 5 (mGluR5). IFN-γ then triggers inflammatory activation of macrophages and augments xCT and CXCL12 expression in adipocytes, forming a bidirectional pathway. Genetic or pharmacological inhibition of xCT, mGluR5, or IFN-γ receptor in adipocytes or NK cells alleviates obesity-related metabolic disorders in mice. Consistently, patients with obesity showed elevated levels of glutamate/mGluR5 and CXCL12/CXCR4 axes, suggesting that a bidirectional pathway between adipocytes and NK cells could be a viable therapeutic target in obesity-related metabolic disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call