Abstract

Heat shock transcription factors (HSFs) play a crucial role in heat stress tolerance in vegetative tissues. However, their involvement in reproductive tissues and their post-translational modifications are not well understood. In this study, we identify the E3 ligase XB3 ORTHOLOG 1 IN ARABIDOPSIS THALIANA (XBAT31) as a key player in the ubiquitination and degradation of HSFB2a/B2b. Our results show that the xbat31 mutant exhibits a higher percentage of unfertile siliques and decreased expression of HSPs in flowers under heat stress conditions compared to the wild type. Conversely, the hsfb2a hsfb2b double mutant displays improved reproductive thermotolerance. We find that XBAT31 interacts with HSFB2a/B2b and mediates their ubiquitination. Furthermore, HSFB2a/B2b ubiquitination is reduced in the xbat31-1 mutant, resulting in higher accumulation of HSFB2a/B2b in flowers under heat stress conditions. Overexpression of HSFB2a or HSFB2b leads to an increase in unfertile siliques under heat stress conditions. Thus, our results dissect the important role of the XBAT31-HSFB2a/B2b module in conferring reproductive thermotolerance in plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.