Abstract

Pre-mRNA splicing is an essential step during gene expression, which takes place in the spliceosome, a large dynamic ribonucleoprotein complex assembled in a stepwise manner. During the last decade, several spliceosomal mutants were functionally identified to cause a lengthened circadian period by introducing intron retention defects into circadian clock genes in Arabidopsis. However, the spliceosomal components that play opposite roles in the circadian period via alternative 3′ splice site (Alt 3'ss) are largely unknown. Here, we demonstrated that XCT (XAP5 CIRCADIAN TIMEKEEPER) is a key spliceosomal component associated with multiple splicing factors. Moreover, genome-wide analysis revealed that inactivation of XCT particularly results in defects in Alt 3'ss recognition by RNA sequencing. Further analysis indicated that a strong alteration in the 3′ splice sites of LHY and TIC partly accounts for the shortened circadian period of the xct mutant. Therefore, our results demonstrated that mutations in XCT shortened the circadian period partly by alternative splicing of LHY and TIC particularly in 3′ splice site recognition, which provides new insight into the link between alternative splicing and the circadian clock.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.